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QCM-technology is essentially a 

balance for very small masses. The 

ability to measure mass changes 

originates in the discovery of the 

relation between the QCM crystal 

resonance frequency and its mass. 

This relation, which is known as the 

Sauerbrey equation, was formulated 

in 1959 by Günter Sauerbrey, at the 

time a Ph.D. student in Berlin. 

Converting frequency change 
to mass change
The Sauerbrey equation is a linear relation-

ship between the resonance frequency 

changes of an oscillating quartz crystal and 

its mass changes, Eq. 1.

In practice, this equation can be used to 

calculate the mass of thin layers added to a 

QCM crystal surface. By inserting the reso-

nance frequency change, ∆f, that results 

from the layer addition, into Eq. 1, you will 

get the mass, ∆m, of the added layer. The 

constant, C, is called the sensitivity constant. 

It is related to the properties of quartz.  

For a 5 MHz crystal, C equals 17.7 ng/(cm2∙ 

Hz). The parameter n is the number of the 

odd harmonic, and can be 1, 3 ,5 ,7 ,… etc.

The relation explained
The linear frequency-mass relation is based 

on the behavior of a pure quartz crystal, 

where a crystal of thickness h (and mass 

m), illustrated in Fig 1, will have a certain 

resonance frequency, f0. Now, we picture 

a scenario where a layer of material, differ-

ent from quartz, is added to the crystal 

surface, Fig 1, right. If certain conditions 

are fulfilled, this scenario can be approxi-

mated with that of a "thicker crystal"-sce-

nario,i.e. a crystal with thickness h + ∆h 
(and mass m + ∆m). Such a crystal will have 

a resonance frequency f < f0. 

The model assumes that the layer added 

to the crystal surface can be approximated 
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to be a part of the oscillating crystal itself. 

It is therefore important that the situation 

is similar enough to the “pure-quartz” 

scenario. For this to hold, the layer on 

the sensor must be thin, rigid and firmly 

attached to the crystal surface. If these 

conditions are fulfilled, the Sauerbrey equa-

tion could be used to calculate the mass of 

the added layer. If, however, the layer on 

the sensor is soft, thick or not coupled to 

the sensor surface, the Sauerbrey equation 

is not valid. In these situations, the model 

will fail, and the calculated mass will be 

underestimated.

Deriving the equation
Resonance in an AT-cut piezoelectric 

quartz crystal will occur when the thick-

ness of the crystal is an odd integer of half 

wavelengths, λ, of the induced wave, and 

Figure 1: (Left) Schematic illustration of a quartz crystal, of thickness h and mass m, excited to resonance by 
the application of an alternating voltage. (Right) An oscillating crystal with added mass. Now the thickness is 
h + ∆h and the mass is m + ∆m. 
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By letting d → Δ, and using eqations 2, 3 

and 4 to replace mq and f  in equation (5) 

we get:

The constant C is the so-called mass 

sensitivity constant. By performing a unit 

analysis of equation (6), the unit of C 
equals:

𝑓𝑓𝑓𝑓 = 𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑞𝑞𝑞𝑞
2𝑡𝑡𝑡𝑡𝑞𝑞𝑞𝑞

= 𝑛𝑛𝑛𝑛 ∙ 𝑓𝑓𝑓𝑓0 (1) 
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2𝑡𝑡𝑡𝑡𝑞𝑞𝑞𝑞
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When equation (6) is used to calculate 

mass changes on a crystal, it can be 

rewritten on the following form:

(8)

in which case m is the areal mass difference, 

and eq. (8) is the so-called Sauerbrey 

equation.

Active area

By using eq. (8) for estimations of 

added mass, it is not necessary to know  

the active area as long as the assumptions  

(i, iii, iii) are fulfilled.
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where the included parameter are 

described below. Below are also listed 

additional parameters that are used in the 

following derivation of the equation.

f  – resonance frequency, 1/s

f0  – fundamental resonance     

  frequency, 1/s

n  – harmonic number

vq  – wave velocity in quartz plate1, m/s

tq  – thickness of quartz plate, m

rq    – density of quartz2, kg/m3

M  – total added mass, kg

A  – Active area, m2

mq – Areal mass, kg/m2

The fundamental resonant frequency, f0, 

where n = 1, can be expressed as:
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The mass per area can be expressed as the 

product of thickness and density, if evenly 

distributed:
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(5)

The change in added mass, m, on the 

crystal can be treated as an equivalent of 

the crystal itself, provided that the added 

mass is:

(i)  small compared to the crystal mass

(ii)  rigidly adsorbed, with no slip or 

deformation imposed by the  

oscillating surface

(iii) evenly distributed over the surface
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