Nanoparticles and thin films made from nanoparticles are gaining recognition and use in various products and applications including displays, sensors and energy storage. These types of products often require well-controlled particle organization, density and film thickness to achieve optimal performance and efficiency.
Techniques that enable such control and precision during thin film formation are critically important in the development of new nanoparticle-based materials. The Langmuir-Blodgett deposition method offers a combination of controlled deposition, a wide range of substrates and usability in ambient conditions. In an LB deposition process, a nanoparticle suspension is first deposited at the air/water interface, then, the resulting film is compressed to the desired surface pressure and particle density and then transferred onto a solid substrate by dipping the substrate into and through the particle layer. The deposition can then be repeated to fabricate alternating layer structures or performed at different speeds and temperatures.
Anti-microbial coating is an example of a smart coating that uses silver nanoparticles. Silver nanoparticles are known for their anti-microbial properties and can be incorporated in many types of surface layers and coatings.
Watch a recorded webinar to learn more about:
To see our nanoparticle coating solutions, go to the product page.
Nanomaterials have found their way into ordinary products such as foods, cosmetics, and sportswear. Why did ‘nano’ become so popular? And what risks are involved when getting exposed to these nanoengineered entities?
Here we list 10 methods that can be used to characterize the nanoparticle chemical composition.
To avoid potential adverse effects, it is relevant to study how nanoparticles interact with their surroundings. Here we present examples of how nanoparticle interaction with a variety of surfaces can be analyzed.
Nanoparticle size is one of the key parameters that are relevant to characterize in nanoparticle suspensions. Here we list six different methods that you can use to characterize the nanoparticle size.
Nanoparticle suspensions are complex systems and their characterization includes several parameters such as size, concentration in solution, shape, surface charge and chemical composition. Here we provide a list of methods that could be used to characterize nanoparticle suspensions.
There are several ways to deposit nanoparticles. Most methods are able to coat the surface, but for controlled monolayer deposition, more sophisticated methods are needed.
Nanoparticle suspensions are complex systems, and understanding their interaction with their environment requires characterization of a broad range of physicochemical properties. Here we present an overview of the key parameters that can be used to profile nanoparticle suspensions.
This blog post discusses the nanoparticle interaction in biological environment.
Nanoparticle lithography is a promising fabrication technique. Unlike other techniques, it has a potential to be performed on curved surfaces.
Jyrki Korpela is the Global Product Manager for Attension and KSV NIMA. He has a background in biomaterials from Aalto University and is constantly looking for ways to make the life of customers easier and their results better. He’s excited about working at the frontiers of science and progress