Gabriel Ohlsson, Ph.D., is a former employee at Biolin Scientific where he initially held a position as an application scientist and later as a sales manager. Dr. Ohlsson did his Ph.D. in engineering physics and has spent a lot of time developing sensing technologies for soft matter material applications. One of his main tools during this research has been the QCM-D technology.
Viscoelasticity is a quality involving both viscous and elastic properties at the same time.
The fundamental resonance frequency of QCM-sensors is often 5MHz. Learn about the theory behind the number.
Read about why it is possible to gain valuable information from a viscoelastic sample by monitoring multiple overtones in QCM measurements.
The D-factor provides information that is complementary to the frequency response. Read about how it can be understood and what information it reveals.
Surfactants are key components in many products and processes where the surfactant-surface interaction dynamic could be critical. Here we show how the surfactant interaction with surfaces can be analyzed in a time-resolved manner at the nanoscale.
Polymer brushes, polyelectrolyte multilayers and hydrogels are typically used to achieve desirable properties. Key parameters influencing these properties are layer conformation and the degree of hydration. Here we show a straightforward way to measure polymer brush swelling and collapse.
Polymers and polyelectrolytes of various conformations are used in many applications where there is a need to tailor the interfacial properties to promote a certain interaction with the surrounding environment. Here we show how polymer layer crosslinking and collapse can be characterized.
Read about how molecule-surface interaction processes and binding can be characterized by QCM-D via time-resolved measurements of mass and thickness.