Why would you want to measure mass and thickness of thin films? One reason to monitor these two parameters is to characterize the build-up and degradation of molecular layers. Also, numerous materials and thin coatings are dynamic in nature and undergo physical changes responding to various stimuli, such as light, temperature, salt concentration or pH. These changes influence the mass, thickness and the structural properties of the material. The mass and thickness are therefore two parameters that are very much involved both the creation, behavior, and degradation of thin films. This makes them relevant to monitor both in the design, characterization, evaluation and optimization of thin films and coatings.
During surface interaction processes such as for example binding of molecules, adsorption, desorption, aggregation, and build-up of multilayer films, the mass and thickness of the molecular layers change. By measuring these changes in real time, we can follow the molecular binding processes and rearrangements. To measure these changes on a molecular scale, we need real-time nanoscale techniques. Once such technique is Quartz Crystal Microbalance with Dissipation monitoring technology (QCM-D). The QCM-D measures the changes of two parameters, the resonance frequency (f) and the energy dissipation (D). From these two parameters, mass and thickness changes at the surface can be extracted. In general, as the mass increases at the surface, the f will decrease. The D-parameter will indicate how soft the layer is. The softer the layer the higher the D. In the case of mass loss, the frequency will instead increase. And if the layer goes from soft to stiff, then the D parameter will decrease.
Molecules that are typically studied with this surface sensitive technology include lipids, proteins, DNA, polymers, surfactants, nanoparticles.
Let us take an example of a mass measurement. Here we are interested in detecting when an anti-biotin antibody first binds to a biotinylated lipid bilayer. We would also like to detect the cleavage of the antibody by an enzyme.
This measurement shows how monitoring of the mass changes allows us to detect both the binding of the antibody and the cleavage by the enzyme. Overall, the measurement offers insight in to both the molecular interaction processes and verifies the function of the enzyme as well as the direction of the antibody at the surface.
Figure 1. Mass changes as an antibody binds to the biotinylated bilayer on the surface (I-II) followed by enzyme cleavage (III) which removes 1/3 of the mass at the surface.
Download our overview to read more about what information you can extract from QCM-D analysis.
Learn more about what questions QSense analysis can help answer in the context of container-closure interaction
Learn about three simple ways that can help you get the most out of your QCM-D data collection.
Find out more about how to use QCM-D for polymer characterization and to analyze polymer interactions at surfaces.
Read about how you can tell a QCM-D bulk shift from a response due to molecular adsorption.
Learn more about Quartz Crystal Microbalance with Dissipation monitoring technology, QCM-D, from a user perspective.
Read about why QCM-D bulk shifts arise and how you could plan your experiments to avoid, or account for them.
Read about the complexity of the microbiome, and resent research on how to make a better probiotic.
Read about two cases where QSense QCM-D technology was used to explore viral membrane disruption and an antiviral strategy towards pandemic preparedness.
A prerequisite for successful data analysis is good input data. Learn about the key characteristics of a quality baseline and how to get there.
Read about the QCM mass sensitivity distribution, what it looks like and how it affects the quantification of the data.
Read this case example where QSense QCM-D was used to analyze the interaction between a ceramic surface and different slurry additives.
Gabriel Ohlsson has been working both as application scientist and sales manager at Biolin Scientific. He did his PhD in engineering physics and has spent a lot of time to develop sensing technologies for soft matter material applications. One of his main tools during this research has been the QCM-D technology.