Surfactants are key components in many products and processes where their surface-active properties are needed, and in such applications, the surfactant-surface interaction dynamic could be critical. Here we show how the surfactant interaction with surfaces can be analyzed in a time-resolved manner at the nanoscale.
In several products and processes, such as in detergents and cleaning agents, in pharmaceutical formulations, in oil recovery, CMP, as well as in mining, the surfactant-surface interaction dynamic is critical to the application. It is therefore relevant to understand these processes at the nanoscale. In this study, QSense QCM-D, which is a surface-sensitive real-time technology, was used to characterize the surfactant adsorption. Two different surfactants were analyzed, Triton-X and ßOG. The focus of the QCM-D measurements was to analyze:
The results, Figure 1, show that both Triton X-100 and ßOG adsorb to the surface. However, the time to saturation differs between the two, and Triton X-100 reaches saturation faster that ßOG even though the concentration was lower. The results also show that ßOG forms a thicker layer than the Triton X-100 and that more ßOG than Triton X-100 remains at the surface after rinse.
Figure 1. Time-resolved thickness change as the surfactants, Triton X-100 and ßOG, adsorb to the sensor surface.
In several products and processes, the surfactant-surface interaction dynamic is important and therefore relevant to understand at the nanoscale. QCM-D analysis provides information on surfactant-surface interaction processes under a variety of different substrate- and experimental conditions. Via this quantification of the surfactant-surface interaction, conclusions can be drawn regarding the suitability of surfactants in different applications.
Download the case study to read more
Read about how and the QCM fundamental frequency matters in measurements
QCM-D was used to compare the potency and mechanisms of action of two different detergents in disrupting lipid membranes
Explore a case example of surfactant adsorption with QSense Omni, showcasing its performance and enhanced data quality.
Read about why it is important for the mass distribution on the QCM sensor to be even, and what the consequences are if it is not.
Learn more about the Sauerbrey equation and when it should be used.
Read about how QSense QCM-D was used to study the adsorption kinetics of different cell types
Get guidance on how to set up a QCM sensor ex-situ coating procedure.
At first glance, SPR and QCM-D are quite similar. Learn about the key differences and when to use which method
Learn about how QSense top 5 sensors can be used in biopharmaceutical drug-surface interaction analysis, in areas such as pre-filled syringes and IV bags.
The quartz crystal microbalance, QCM, measures changes in resonance frequency and provides insights into thin film deposition and material properties
Read about how QSense QCM-D was used to study adsorption and assess enzymatic activity of cellulase
Gabriel Ohlsson, Ph.D., is a former employee at Biolin Scientific where he initially held a position as an application scientist and later as a sales manager. Dr. Ohlsson did his Ph.D. in engineering physics and has spent a lot of time developing sensing technologies for soft matter material applications. One of his main tools during this research has been the QCM-D technology.