Proteins are vital for life and perform a wide range of essential biochemical tasks in all living organisms. Cells of these organisms are hence under a constant pressure to maintain an optimal protein environment, assuring all proteins are correctly folded and functional.
Unfolded proteins are sticky and tend to form so-called protein aggregates with either themselves, other proteins or when binding to exposed surfaces within the cell. Aggregation mechanisms depend on both primary amino acid sequence of the protein and external environment such as pH, salt and temperature. Most protein aggregates can be reversed or degraded by the cell protein quality system (molecular chaperones or proteases).
However, sometimes the control mechanisms fail and accumulated aggregates transform into amyloid plaques and other protein megastructures. This is the case in protein misfolding diseases, proteopathies, such as Alzheimer’s and Parkinson’s disease. Amyloids behave very differently to functional soluble protein, for example in regards to rigidity. Current trends within this field of research is to study the kinetic buildup of such megastructures and consequently also searching for therapeutic agents that prevent buildup and hence disease. Protein misfolding diseases are a huge threat to the increasing ageing population, with such diseases affecting more than 10% of all people over the age of 65.
Learn about how aggregation of protein Tau in tauopathies, a sub-set of neurodegenerative diseases, can be studied with QCM-D.
Explore a case example of surfactant adsorption with QSense Omni, showcasing its performance and enhanced data quality.
Read about why it is important for the mass distribution on the QCM sensor to be even, and what the consequences are if it is not.
Learn more about the Sauerbrey equation and when it should be used.
Read about how QSense QCM-D was used to study the adsorption kinetics of different cell types
Get guidance on how to set up a QCM sensor ex-situ coating procedure.
At first glance, SPR and QCM-D are quite similar. Learn about the key differences and when to use which method
Learn about how QSense top 5 sensors can be used in biopharmaceutical drug-surface interaction analysis, in areas such as pre-filled syringes and IV bags.
The quartz crystal microbalance, QCM, measures changes in resonance frequency and provides insights into thin film deposition and material properties
Read about how QSense QCM-D was used to study adsorption and assess enzymatic activity of cellulase
Generating QCM-D data is straightforward, but analysis can be tricky. Here are some tips and tricks from four seasoned QCM-D users
QCM-D is a powerful tool in the analysis of lipid-based systems