A common way to store and administer therapeutic protein to patients is via prefilled glass-syringes. Silicone oil, which is used as a syringe lubricant, could induce protein loss, but the addition of surfactant has been shown to reduce such loss. A study has been made to get a deeper understanding of why this is the case [1]. Here we present a summary of how the protein-silicone oil interaction was analyzed in the presence and absence of surfactant.
To be able to analyze the protein interaction with the silicone oil/water interface, a model system that mimics protein formulation in silicone oil lubricated syringes was designed [1]. Glass sensors, spin-coated with silicone oil, were to represent the silicone oil lubricated syringe, and the silicone oil coated sensors were then exposed to the model protein together with different non-ionic surfactants.
The protein-silicone oil surface interaction was analyzed with QSense® QCM-D, a surface-sensitive technology that monitors mass uptake at the surface in real-time. In addition to the mass, QCM-D also senses the structure of the layer adsorbed (or bound) at the surface. The adsorption behavior of the model protein, both in the absence and presence of two different surfactants, PS-80 and Poloxamer, were measured and compared.
The time-resolved mass changes, Fig. 1, showed that the total amount adsorbed is smaller when PS-80 is added to the protein solution, compared to when there is no surfactant present. The addition of Poloxamer 188, however, did not alter the amount adsorbed significantly. A possible explanation for this observation, presented by the authors [1], could be that PS-80 shows faster adsorption kinetics onto the oil-water interface than the model protein on its own (data not shown). This would allow PS-80 to form a protective layer at the surface, and thereby be more effective in preventing the protein adsorption, compared to Poloxamer 188, which binds more slowly to the interface.
Figure 1. Time-resolved mass change upon injection of the three samples i) protein, ii) protein with PS-80 and iii) protein with Poloxamer 188.
It was concluded that the time-resolved QCM-D analysis could provide insight into the protein-surface interaction, and how the protein adsorbs at the silicone oil/water interface. It was also concluded that this kind of data can shed light on how formulation additives impact the protein-surface interaction, information which can help decide which additives to use to minimize loss of product.
Download the case study to read more about protein interaction with surfaces with and without the presence of excipient.
Learn how QSense QCM-D analysis can reveal membrane fouling dynamics and optimize cleaning strategies for more efficient water treatment
Learn how QSense QCM-D helps detect and prevent surface-induced instabilities in biologics. Join our webinar for insights and practical examples.
Learn about the top QSense sensors for analyzing biopharmaceutical drug-surface interactions in the context of IV bags.
Learn about QCM-D, Quartz Crystal Microbalance with Dissipation monitoring - an analytical tool for surface interaction studies at the nanoscale.
Explore QSense QCM-D sensors to optimize cleaning efficiency with real-time insights, enhancing formulations and protocols across various conditions.
Learn how how run small volume measurements with QSense Omni
Learn about of the acoustic technology, QCM-D, via musical instrument analogies.
Learn about how QSense analysis can be used to assess adsorption of biologics and excipients to materials used in IV-bags
Discover how QSense QCM-D technology reveals real-time cleaning insights. Join our webinar to enhance your cleaning strategies and efficiency.
Here we explain how Quartz Crystal Microbalance with Dissipation monitoring, QCM-D, works.
QSense QCM-D technology enables analysis of cleaning process dynamics, surface etching, and surface residual