A common way to store and administer therapeutic protein to patients is via prefilled glass-syringes. Silicone oil, which is used as a syringe lubricant, could induce protein loss, but the addition of surfactant has been shown to reduce such loss. A study has been made to get a deeper understanding of why this is the case [1]. Here we present a summary of how the protein-silicone oil interaction was analyzed in the presence and absence of surfactant.
To be able to analyze the protein interaction with the silicone oil/water interface, a model system that mimics protein formulation in silicone oil lubricated syringes was designed [1]. Glass sensors, spin-coated with silicone oil, were to represent the silicone oil lubricated syringe, and the silicone oil coated sensors were then exposed to the model protein together with different non-ionic surfactants.
The protein-silicone oil surface interaction was analyzed with QSense® QCM-D, a surface-sensitive technology that monitors mass uptake at the surface in real-time. In addition to the mass, QCM-D also senses the structure of the layer adsorbed (or bound) at the surface. The adsorption behavior of the model protein, both in the absence and presence of two different surfactants, PS-80 and Poloxamer, were measured and compared.
The time-resolved mass changes, Fig. 1, showed that the total amount adsorbed is smaller when PS-80 is added to the protein solution, compared to when there is no surfactant present. The addition of Poloxamer 188, however, did not alter the amount adsorbed significantly. A possible explanation for this observation, presented by the authors [1], could be that PS-80 shows faster adsorption kinetics onto the oil-water interface than the model protein on its own (data not shown). This would allow PS-80 to form a protective layer at the surface, and thereby be more effective in preventing the protein adsorption, compared to Poloxamer 188, which binds more slowly to the interface.
Figure 1. Time-resolved mass change upon injection of the three samples i) protein, ii) protein with PS-80 and iii) protein with Poloxamer 188.
It was concluded that the time-resolved QCM-D analysis could provide insight into the protein-surface interaction, and how the protein adsorbs at the silicone oil/water interface. It was also concluded that this kind of data can shed light on how formulation additives impact the protein-surface interaction, information which can help decide which additives to use to minimize loss of product.
Download the case study to read more about protein interaction with surfaces with and without the presence of excipient.
QSense QCM-D technology enables analysis of cleaning process dynamics, surface etching, and surface residual
Read about how and the QCM fundamental frequency matters in measurements
QCM-D was used to compare the potency and mechanisms of action of two different detergents in disrupting lipid membranes
Explore a case example of surfactant adsorption with QSense Omni, showcasing its performance and enhanced data quality.
Read about why it is important for the mass distribution on the QCM sensor to be even, and what the consequences are if it is not.
Learn more about the Sauerbrey equation and when it should be used.
Read about how QSense QCM-D was used to study the adsorption kinetics of different cell types
Get guidance on how to set up a QCM sensor ex-situ coating procedure.
At first glance, SPR and QCM-D are quite similar. Learn about the key differences and when to use which method
Learn about how QSense top 5 sensors can be used in biopharmaceutical drug-surface interaction analysis, in areas such as pre-filled syringes and IV bags.
The quartz crystal microbalance, QCM, measures changes in resonance frequency and provides insights into thin film deposition and material properties