Proteins tend to passively adsorb to surfaces via hydrophobic interactions. The amount adsorbed depends on many factors such as the protein itself, the ambient conditions and the surface material. So how can we assess the adsorbed amount at these various conditions? Here we show how protein adsorption can be quickly measured.
To assess the adsorbed amount, we use QSense® QCM-D, a surface sensitive real-time technology, that monitors mass changes at the surface. Monitoring mass changes as a function of time, it is straightforward to measure how much protein that adsorbs to the surface. It is also possible to compare the uptake at different conditions by varying, for example, the surface material, the protein concentration, buffer pH and ionic strength.
The surface material has a large impact on the amount of protein that will adsorb. Particularly interesting are plastic and glass materials, which are continuously used in protein biotechnology applications. For example, syringes, concentrator filters and container systems are all composed of either glass or some plastic polymer. So, what are the adsorbed amounts of our model protein on for example borosilicate and PVDF surfaces?
Another parameter that may influence the adsorbed amount is the protein concentration. Such influence would be relevant in for example large-scale recombinant protein production, where extremely high protein concentrations are normally used. So, would there be any difference in surface uptake at different concentrations with our model protein at the two different surfaces?
Using QSense QCM-D, we addressed these questions and characterized the adsorption of lysozyme to borosilicate and PVDF, i.e. glass and plastic, at low and high protein concentration (low, 1 mg/ml, and high, 40 mg/ml).
The results in Fig. 1 show that the surface uptake is 2.5 times higher for the glass surface compared to the plastic surface. It also shows that the adsorbed amount is more than double at the high protein concentration compared to the low one.
Figure 1. Protein adsorption, characterized as mass uptake, onto glass and plastics at two different concentrations. The surface uptake was higher with the high protein concentration. For both concentrations, more protein was adsorbed on the glass than on the plastic.
The amount of protein adsorbed to a solid surface will depend on many factors and are generally difficult to measure and quantify. However, using a real-time screening method such as QCM-D, conditions leading to protein losses can be minimized for many of the steps included in for example a protein production process.
Download the application note to read the full study.
Learn more about what questions QSense analysis can help answer in the context of container-closure interaction
Learn about three simple ways that can help you get the most out of your QCM-D data collection.
Find out more about how to use QCM-D for polymer characterization and to analyze polymer interactions at surfaces.
Read about how you can tell a QCM-D bulk shift from a response due to molecular adsorption.
Learn more about Quartz Crystal Microbalance with Dissipation monitoring technology, QCM-D, from a user perspective.
Read about why QCM-D bulk shifts arise and how you could plan your experiments to avoid, or account for them.
Read about the complexity of the microbiome, and resent research on how to make a better probiotic.
Read about two cases where QSense QCM-D technology was used to explore viral membrane disruption and an antiviral strategy towards pandemic preparedness.
A prerequisite for successful data analysis is good input data. Learn about the key characteristics of a quality baseline and how to get there.
Read about the QCM mass sensitivity distribution, what it looks like and how it affects the quantification of the data.
Read this case example where QSense QCM-D was used to analyze the interaction between a ceramic surface and different slurry additives.