One of the major challenges in pharmaceutical development is protein aggregation – a phenomenon that could have negative impact not only on the drug quality, but which could also potentially affect drug safety. In a recent study1, results are presented that provide a deeper understanding of the relation between protein adsorption and aggregation at the oil-water interface. The new insights could help designing more stable therapeutic formulations, and QSense QCM-D was one of the analysis methods that helped piecing the puzzle together.
As we talked about in a previous blogpost, a common way to store and administer therapeutic protein is via prefilled syringes - syringes where the interior surfaces typically are coated with a lubricant, silicone oil, to facilitate the use of the syringe. As the therapeutic protein stored in the syringe interacts with this hydrophobic surface it could adsorb, a process which has been a suspected source of aggregation.
To get a deeper understanding of protein interaction with silicone-oil coated surfaces, and how this is potentially related to protein aggregation, a group of researchers set out to analyze the surface activity of monoclonal antibodies (mAbs)1, a major class of protein-based therapeutics used for the treatment of several different diseases. In the study1, the researchers also analyzed if two, pharmaceutically relevant, and commonly used, surfactants would lower the adsorption and aggregation of the mAbs under investigation.
To paint the full picture, and to get a deeper understanding of the surface activity and the aggregation of the mAbs, several complementary analysis methods were used1. The surface mass adsorption of the two mAbs, the two surfactants and mAb + surfactant mixtures was analyzed by QCM-D, a surface sensitive technology that detects time-resolved mass changes at the nanoscale.
Figure 1. Mass uptake at the sensor surface measured by QCM-D. A) Comparison of mass uptake of mAb1 and mAb2. B) and C) comparison of mAb1, surfactants P188 and PS20, and mAb1 + surfactant mixtures.
The QCM-D analysis revealed several insights on the interfacial adsorption and the surface mass uptake of the mAbs, the surfactants and the mAb + surfactant mixtures1. For example, the QCM-D data, Fig 1., showed that
Combining the insights from the QCM-D analysis with information from the complementary characterization, the researchers concluded that there is a direct relation between mAbs adsorption at the oil-water interface and aggregation. The study also showed that surfactants, which will competitively adsorb to the interface, will lower the aggregation of the mAbs
Protein aggregation is one of the challenges encountered in pharmaceutical development. In a recent study1, results are presented that links absorption and aggregation, information that can help formulate more stable therapeutic solutions. In the study, the researchers used QSense QCM-D analysis to characterize the surface mass uptake - information which helped piecing the puzzle together.
Watch the webinar to learn more about this study1.
The quartz crystal microbalance, QCM, measures changes in resonance frequency and provides insights into thin film deposition and material properties
Read about how QSense QCM-D was used to study adsorption and assess enzymatic activity of cellulase
Generating QCM-D data is straightforward, but analysis can be tricky. Here are some tips and tricks from four seasoned QCM-D users
QCM-D is a powerful tool in the analysis of lipid-based systems
If you are looking for a high-end instrument but cannot determine whether it is the Pro or Omni that will best suit your needs, here is the guide for you
Explore the key factors influencing QCM baseline stability and get advice on management strategies
Learn more about how dissipation can be measured in QCM:s and the pros and cons of the different methods.
Read about how QSense QCM-D was used to study antibody fouling on steel surfaces.
Read about what determines the sensing depth of the QCM-D technology and get examples of typical values
Watch the webinar
Read the guidelines on how to decide which QCM instrument will be the most suitable for your needs
Read about how protein adsorption at various surface and solution conditions quickly can be measured