The increasing demand of electrical vehicles and energy storage solutions has highlighted the need of new and improved battery technology, and a lot of research efforts are made towards more stable, lower cost and safer energy storage. One of the technologies used in this research is QSense EQCM-D. Here we exemplify how the technology is used and share a list of recent publications.
Gaining insights through time resolved nanoscale analysis
QSense Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) is a surface sensitive technology used for time resolved analysis of molecule - surface interactions as well as for analysis of formation and evolution of interfacial layers. Two battery research areas where Electrochemical QCM-D, EQCM-D, is used is in the analysis of the solid electrolyte interphase (SEI) and in the development of complex battery electrode materials.
Using EQCM-D to analyze the solid electrolyte interphase
A solid electrolyte interphase (SEI) is an interfacial layer that is built up on the battery anode through electrolyte decomposition during battery charge and discharge cycles. A stable SEI is key to reversible and stable cycling of a battery. Ideally, the SEI should be mechanically robust, electrically insulating and ionically conductive, and significant efforts have been made to reveal the conditions at which these optimal SEI properties are achieved. The fact that an SEI composition and structure evolves over time, makes the task of understanding and predicting the properties even more challenging.
In the investigation of SEI:s, EQCM-D is used to analyze
- Dynamic build-up of SEI
- Viscoelastic properties
- Influence of electrolyte
Below we have collected a few references that exemplify the usage of QSense EQCM-D in the analysis of various aspects of SEI:s
Examples of recent publications where QSense EQCM-D is used to analyze SEI
- Cora, S., Ahmad, S., & Sa, N. (2021). In Situ Probing of Mass Exchange at the Solid Electrolyte Interphase in Aqueous and Nonaqueous Zn Electrolytes with EQCM-D. ACS Applied Materials & Interfaces, 13(8), 10131–10140
https://doi.org/10.1021/ACSAMI.1C00565
- Chai, Y., Jia, W., Hu, Z., Jin, S., Jin, H., Ju, H., Yan, X., Ji, H., & Wan, L. J. (2021). Monitoring the mechanical properties of the solid electrolyte interphase (SEI) using electrochemical quartz crystal microbalance with dissipation. Chinese Chemical Letters, 32(3), 1139–1143
https://doi.org/10.1016/J.CCLET.2020.09.008
- Narayanan, A., Mugele, F., & Duits, M. H. G. (2020). Electrochemically Induced Changes in TiO2 and Carbon Films Studied with QCM-D. ACS Applied Energy Materials, 3(2), 1775–1783
https://doi.org/10.1021/ACSAEM.9B02233
- Kitz, P. G., Lacey, M. J., Novák, P., & Berg, E. J. (2020). Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate. Journal of Power Sources, 477, 228567
https://doi.org/10.1016/J.JPOWSOUR.2020.228567
EQCM-D in the development of complex battery electrode materials
Another area where a lot of effort is made is in the development of new generations of battery electrolyte, anode, and cathode materials. EQCM-D has in particular been used in the analysis of battery materials that undergoes changes in viscoelastic properties, and examples include analysis of
- Composite materials
- Polymer containing electrodes
- Porous electrodes
- Ion intercalation and viscoelastic properties
Below we have collected a few references that exemplify the usage of QSense EQCM-D in the analysis of complex electrode materials
Examples of recent publications where QSense EQCM-D is used to develop complex battery electrode materials
- Wang, Z., Ouyang, L., Li, H., Wågberg, L., & Hamedi, M. M. (2021). Layer-by-Layer Assembly of Strong Thin Films with High Lithium Ion Conductance for Batteries and Beyond. Small, 17(32), 2100954
https://doi.org/10.1002/SMLL.202100954
- Tiétchatiétcha, G. F., Mears, L. L. E., Dworschak, D., Roth, M., Klü, I., & Valtiner, M. (2020). Adsorption and Diffusion Moderated by Polycationic Polymers during Electrodeposition of Zinc. Cite This: ACS Appl. Mater. Interfaces, 12
https://doi.org/10.1021/acsami.0c04263
- Browning, K. L., Sacci, R. L., Doucet, M., Browning, J. F., Kim, J. R., & Veith, G. M. (2020). The Study of the Binder Poly(acrylic acid) and Its Role in Concomitant Solid–Electrolyte Interphase Formation on Si Anodes. ACS Applied Materials & Interfaces, 12(8), 10018–10030
https://doi.org/10.1021/ACSAMI.9B22382
- Shpigel, N., Levi, M. D., & Aurbach, D. (2019). EQCM-D technique for complex mechanical characterization of energy storage electrodes: Background and practical guide. Energy Storage Materials, 21, 399–413
https://doi.org/10.1016/J.ENSM.2019.05.026
- Shpigel, N., Levi, M. D., Sigalov, S., Daikhin, L., & Aurbach, D. (2018). In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Accounts of Chemical Research, 51(1), 69–79
https://doi.org/10.1021/ACS.ACCOUNTS.7B00477
Other battery related areas where QSense QCM-D analysis is used
In addition to the two areas mentioned above, analysis of SEI:s and development of complex electrode materials, QSense EQCM-D is used in several other battery related research areas, which is exemplified by the list of references below.
- Szumska, A. A., Maria, I. P., Flagg, L. Q., Savva, A., Surgailis, J., Paulsen, B. D., Moia, D., Chen, X., Griggs, S., Mefford, J. T., Rashid, R. B., Marks, A., Inal, S., Ginger, D. S., Giovannitti, A., & Nelson, J. (2021). Reversible Electrochemical Charging of n-Type Conjugated Polymer Electrodes in Aqueous Electrolytes. Journal of the American Chemical Society, 143(36), 14795–14805
https://doi.org/10.1021/JACS.1C06713
- Ji, Y., Yin, Z.-W., Yang, Z., Deng, Y.-P., Chen, H., Lin, C., Yang, L., Yang, K., Zhang, M., Xiao, Q., Li, J.-T., Chen, Z., Sun, S.-G., & Pan, F. (2021). From bulk to interface: electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance. Chemical Society Reviews, 50(19)
https://doi.org/10.1039/D1CS00629K
- Zhao, M., Tang, X., Zhang, H., Gu, C., & Ma, Y. (2021). Characterization of complicated electropolymerization using UV–vis spectroelectrochemistry and an electrochemical quartz-crystal microbalance with dissipation: A case study of tricarbazole derivatives. Electrochemistry Communications, 123, 106913
https://doi.org/10.1016/J.ELECOM.2020.106913
- Shpigel, N., Chakraborty, A., Malchik, F., Bergman, G., Nimkar, A., Gavriel, B., Turgeman, M., Hong, C. N., Lukatskaya, M. R., Levi, M. D., Gogotsi, Y., Major, D. T., & Aurbach, D. (2021). Can Anions Be Inserted into MXene? Journal of the American Chemical Society, 143(32), 12552–12559
https://doi.org/10.1021/JACS.1C03840
- Melin, T., Lundström, R., & Berg, E. J. (2021). Revisiting the Ethylene Carbonate–Propylene Carbonate Mystery with Operando Characterization. Advanced Materials Interfaces, 2101258
https://doi.org/10.1002/ADMI.202101258
- Wang, S., Park, A. M. G., Flouda, P., Easley, A. D., Li, F., Ma, T., Fuchs, G. D., & Lutkenhaus, J. L. (2020). Solution-Processable Thermally Crosslinked Organic Radical Polymer Battery Cathodes. ChemSusChem, 13(9), 2371–2378
https://doi.org/10.1002/CSSC.201903554
- Zhang, Y., Liang, Y., Dong, H., Wang, X., & Yao, Y. (2020). Charge Storage Mechanism of a Quinone Polymer Electrode for Zinc-ion Batteries. Journal of The Electrochemical Society, 167(7), 070558
https://doi.org/10.1149/1945-7111/AB847A
- Deniz, M., & Deligöz, H. (2019). Flexible self-assembled polyelectrolyte thin films based on conjugated polymer: Quartz cristal microbalance dissipation (QCM-D) and cyclic voltammetry analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 206–216
https://doi.org/10.1016/J.COLSURFA.2018.12.014
- Zhang, Q., Levi, M. D., Dou, Q., Lu, Y., Chai, Y., Lei, S., Ji, H., Liu, B., Bu, X., Ma, P., & Yan, X. (2019). The Charge Storage Mechanisms of 2D Cation-Intercalated Manganese Oxide in Different Electrolytes. Advanced Energy Materials, 9(3), 1802707 https://doi.org/10.1002/AENM.201802707
- Kitz, P. G., Lacey, M. J., Novák, P., & Berg, E. J. (2018). Operando EQCM-D with Simultaneous in Situ EIS: New Insights into Interphase Formation in Li Ion Batteries. Analytical Chemistry, 91(3), 2296–2303
https://doi.org/10.1021/ACS.ANALCHEM.8B04924
- Qian, J., Wiener, C. G., Zhu, Y., & Vogt, B. D. (2018). Swelling and plasticization of polymeric binders by Li-containing carbonate electrolytes using quartz crystal microbalance with dissipation. Polymer, 143, 237–244
https://doi.org/10.1016/J.POLYMER.2018.04.021
- Levi, M. D., Shpigel, N., Sigalov, S., Dargel, V., Daikhin, L., & Aurbach, D. (2017). In Situ Porous Structure Characterization of Electrodes for Energy Storage and Conversion by EQCM-D: a Review. Electrochimica Acta, 232, 271–284 https://doi.org/10.1016/J.ELECTACTA.2017.02.149
- Dargel, V., Shpigel, N., Sigalov, S., Nayak, P., Levi, M. D., Daikhin, L., & Aurbach, D. (2017). In situ real-time gravimetric and viscoelastic probing of surface films formation on lithium batteries electrodes. Nature Communications 2017 8:1, 8(1), 1–8 https://doi.org/10.1038/s41467-017-01722-x
- Lindberg, J., Wickman, B., Behm, M., Cornell, A., & Lindbergh, G. (2017). The effect of O2 concentration on the reaction mechanism in Li-O2 batteries. Journal of Electroanalytical Chemistry, 797, 1–7
https://doi.org/10.1016/J.JELECHEM.2017.05.005
- Shpigel, N., Lukatskaya, M. R., Sigalov, S., Ren, C. E., Nayak, P., Levi, M. D., Daikhin, L., Aurbach, D., & Gogotsi, Y. (2017). In Situ Monitoring of Gravimetric and Viscoelastic Changes in 2D Intercalation Electrodes. ACS Energy Letters, 2(6), 1407–1415
https://doi.org/10.1021/ACSENERGYLETT.7B00133
- Jäckel, N., Dargel, V., Shpigel, N., Sigalov, S., Levi, M. D., Daikhin, L., Aurbach, D., & Presser, V. (2017). In situ multi-length scale approach to understand the mechanics of soft and rigid binder in composite lithium ion battery electrodes. Journal of Power Sources, 371, 162–166
https://doi.org/10.1016/J.JPOWSOUR.2017.10.048
- Ralston, K. D., Thomas, S., Williams, G., & Birbilis, N. (2016). An electrochemical quartz crystal microbalance study of magnesium dissolution. Applied Surface Science, 360, 342–348
https://doi.org/10.1016/J.APSUSC.2015.11.040
- Levi, M. D., Daikhin, L., Aurbach, D., & Presser, V. (2016). Quartz Crystal Microbalance with Dissipation Monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochemistry Communications, 67, 16–21
https://doi.org/10.1016/J.ELECOM.2016.03.006
- Sigalov, S., Shpigel, N., Levi, M. D., Feldberg, M., Daikhin, L., & Aurbach, D. (2016). Electrochemical Quartz Crystal Microbalance with Dissipation Real-Time Hydrodynamic Spectroscopy of Porous Solids in Contact with Liquids. Analytical Chemistry, 88(20), 10151–10157
https://doi.org/10.1021/ACS.ANALCHEM.6B02684
- Formisano, N., Jolly, P., Bhalla, N., Cromhout, M., Flanagan, S. P., Fogel, R., Limson, J. L., & Estrela, P. (2015). Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sensors and Actuators B: Chemical, 220, 369–375
https://doi.org/10.1016/J.SNB.2015.05.049
- Shpigel, N., Levi, M. D., Sigalov, S., Girshevitz, O., Aurbach, D., Daikhin, L., Jäckel, N., & Presser, V. (2015). Non-Invasive In Situ Dynamic Monitoring of Elastic Properties of Composite Battery Electrodes by EQCM-D. Angewandte Chemie, 127(42), 12530–12533
https://doi.org/10.1002/ANGE.201501787
- Yang, Z., Dixon, M. C., Erck, R. A., & Trahey, L. (2015). Quantification of the Mass and Viscoelasticity of Interfacial Films on Tin Anodes Using EQCM-D. ACS Applied Materials and Interfaces, 7(48), 26585–26594
https://doi.org/10.1021/ACSAMI.5B07966
- Yang, Z., Dixon, M. C., Erck, R. A., & Trahey, L. (2015). Quantification of the Mass and Viscoelasticity of Interfacial Films on Tin Anodes Using EQCM-D. ACS Applied Materials and Interfaces, 7(48), 26585–26594
https://doi.org/10.1021/ACSAMI.5B07966
- Yang, Z., Ingram, B. J., & Trahey, L. (2014). Interfacial Studies of Li-Ion Battery Cathodes Using In Situ Electrochemical Quartz Microbalance with Dissipation. Journal of The Electrochemical Society, 161(6), A1127
https://doi.org/10.1149/2.101406JES
- Yang, Z., Ingram, B. J., & Trahey, L. (2014). Interfacial Studies of Li-Ion Battery Cathodes Using In Situ Electrochemical Quartz Microbalance with Dissipation. Journal of The Electrochemical Society, 161(6), A1127
https://doi.org/10.1149/2.101406JES
Download the list of references as pdf below