Model membranes are used in various fields of research, for example in the design and development of biosensor platforms, biomaterial coatings and drug delivery applications. Here we present examples of how these lipid-based systems can be characterized using QSense QCM-D technology.
QCM-D has been a standard technology in lipid-based research for about two decades1. Offering real-time information on mass, thickness and viscoelastic properties of surface adhering layers, the technology enables monitoring of interaction dynamics between lipids and the solid support. It also enables characterization of the formed lipid-based structures, e.g. analysis of
The key to be able to measure structural changes, such as the vesicle rupture and fusion process, lies in the ability of QCM-D to measure what is often referred to as “hydrated mass”. Whereas the “dry mass”, measured by for example optical techniques, refers to the mass of the molecules of interest, the hydrated mass includes both the molecules and the associated solvent. Monitoring the hydrated mass enables detection of conformational changes, such as layer swelling and collapse. In these structural rearrangements, the number of molecules at the surface is the same, but the amount of coupled solvent differs. In the characterization of lipid-based structures, this feature is very helpful as it enables the differentiation between for example lipids arranged as vesicles and lipids arranged as a bilayer, where the former structure will have large amounts of associated solvent, and the latter will have little.
Figure 1. Schematic illustration of lipid bilayer formation, monitored by QCM-D.
Download the overview to read more about how lipid model systems can be characterized using QSense QCM-D technology.
Read about Prof. Jackman's experience using QCM-D to study surfactant-interaction with model membranes
Read about Prof. Jackman's experience using QCM-D in the field of membrane biophysics.
Watch the webinar to learn more about how to combine QCM-D and Neutron reflectrometry to examine membrane biochemistry at the solid-liquid Interface
Read about two cases where QSense QCM-D technology was used to explore viral membrane disruption and an antiviral strategy towards pandemic preparedness.
To characterize model membrane platforms, such as vesicles, monolayers, and bilayers, it is often necessary to use more than one analysis method.
Learn about how QSense QCM-D is used to monitor vesicle interaction with solid substrates and to characterize surface-adsorbed vesicle layers.