Let’s think of it this way: visualize a church bell, it could look like the one imaged above. What happens if you hit that church bell? You will get a tone back, a tone with a certain frequency, right? Let us imagine that two people, for some reason, are hugging that church bell. What would happen with the tone if you hit the church bell now? The tone, the frequency, will be lower since mass is now added to the bell.
The same goes for the QCM-D sensor. When you apply a voltage to it, it will start oscillating at its resonance frequency. If mass is added to the sensor, the frequency of the oscillation will decrease. From the frequency decrease, you can get information about the mass that has been added. That is one part of the QCM-D fundamentals.
But how to understand the dissipation and how that can give me information about how soft the material is? Let us go back to the church bell. When the two persons are hugging it, it will not only change tone but also, the tone will fade out faster now. The two “soft persons” let energy get lost in the system so the ringing will stop faster. Let us pretend that we would have glued two stones onto the church bell instead, then the ringing would have continued for a longer time since the stones are rigid and will not dampen the motion like the “soft persons” do.
This is how dissipation can tell us about the softness of the material on the surface. We actually measure the time it takes for the sensor to come to a stop after oscillating it and the faster it stops, the softer material it is.
Read more about what you can use QCM-D technology for here.
QSense QCM-D technology enables analysis of cleaning process dynamics, surface etching, and surface residual
Read about how and the QCM fundamental frequency matters in measurements
QCM-D was used to compare the potency and mechanisms of action of two different detergents in disrupting lipid membranes
Explore a case example of surfactant adsorption with QSense Omni, showcasing its performance and enhanced data quality.
Read about why it is important for the mass distribution on the QCM sensor to be even, and what the consequences are if it is not.
Learn more about the Sauerbrey equation and when it should be used.
Read about how QSense QCM-D was used to study the adsorption kinetics of different cell types
Get guidance on how to set up a QCM sensor ex-situ coating procedure.
At first glance, SPR and QCM-D are quite similar. Learn about the key differences and when to use which method
Jennie is Global Technical Product Manager for QSense at Biolin Scientific. She has a Master of Science in Bioengineering from Chalmers University of Technology and spent the first years after graduation focusing on membrane proteins and how to identify and characterize these in the best way. At Biolin Scientific, she has also worked as an Application Specialist for QSense, In-House Sales Manager, and Academy Manager.