Let’s think of it this way: visualize a church bell, it could look like the one imaged above. What happens if you hit that church bell? You will get a tone back, a tone with a certain frequency, right? Let us imagine that two people, for some reason, are hugging that church bell. What would happen with the tone if you hit the church bell now? The tone, the frequency, will be lower since mass is now added to the bell.
The same goes for the QCM-D sensor. When you apply a voltage to it, it will start oscillating at its resonance frequency. If mass is added to the sensor, the frequency of the oscillation will decrease. From the frequency decrease, you can get information about the mass that has been added. That is one part of the QCM-D fundamentals.
But how to understand the dissipation and how that can give me information about how soft the material is? Let us go back to the church bell. When the two persons are hugging it, it will not only change tone but also, the tone will fade out faster now. The two “soft persons” let energy get lost in the system so the ringing will stop faster. Let us pretend that we would have glued two stones onto the church bell instead, then the ringing would have continued for a longer time since the stones are rigid and will not dampen the motion like the “soft persons” do.
This is how dissipation can tell us about the softness of the material on the surface. We actually measure the time it takes for the sensor to come to a stop after oscillating it and the faster it stops, the softer material it is.
Read more about what you can use QCM-D technology for here.
Learn how QSense QCM-D helps detect and prevent surface-induced instabilities in biologics. Join our webinar for insights and practical examples.
Learn about the top QSense sensors for analyzing biopharmaceutical drug-surface interactions in the context of IV bags.
Learn about QCM-D, Quartz Crystal Microbalance with Dissipation monitoring - an analytical tool for surface interaction studies at the nanoscale.
Explore QSense QCM-D sensors to optimize cleaning efficiency with real-time insights, enhancing formulations and protocols across various conditions.
Learn how how run small volume measurements with QSense Omni
Learn about of the acoustic technology, QCM-D, via musical instrument analogies.
Learn about how QSense analysis can be used to assess adsorption of biologics and excipients to materials used in IV-bags
Discover how QSense QCM-D technology reveals real-time cleaning insights. Join our webinar to enhance your cleaning strategies and efficiency.
Here we explain how Quartz Crystal Microbalance with Dissipation monitoring, QCM-D, works.
Jennie Ringberg is a former employee at Biolin Scientific. She was the Global Technical Product Manager for QSense and also held roles as Application Specialist for QSense, In-House Sales Manager, and Academy Manager. Jennie holds a Master of Science in Bioengineering from Chalmers University of Technology and spent the first years after graduation focusing on membrane proteins and how to identify and characterize these in the best way.