Applications controlled by interfacial rheology, including:
- Biological systems such as pulmonary lung surfactant and meibum. Their functionality is largely based on their flow on interphases under stress.
- Emulsions and foams whose stability is vital for their functionality. Viscoelasticity of the liquid-liquid interface can predict the stability of a colloidal system. Micelle/droplet fusion and fission are largely dependent on the interface viscoelasticity.
- Food products, cosmetics, biophysics, pharmaceuticals, oil and gas, application areas where molecules at interfaces have a significant impact on the system performance.
Langmuir monolayer structural studies, including:
- Phase changes, as the viscoelasticity of the layer is strongly affected by the microstructure of the monolayer.
- Surface reactions such as crosslinking in real-time, as changes in molecular size and shape have typically a strong response in their rheological properties.
- Aggregation and adsorption, as they typically change the viscoelasticity of the film.